2013年9月3日星期二

YJ-82

Tungsten alloy swaging rod is made of tungsten alloy rod through calcinations. The normal method used in the processing are extruding, forging and sintering. After calcinations, tungsten alloy swaging rod has higher ductility, toughness and tensile strength than tungsten alloy rod, so it can be used for a longer time. Tungsten alloy swaging rod is widely used in industry as well as military areas, such as rifle bullet, armor piercing, snipe rifle penetrator, etc.

Tungsten alloy swaging rod is used for YJ-82

The Yingji-82 or YJ-82 (Chinese: 鹰击-82, literally "Eagle Strike"; NATO reporting name: CSS-N-8 Saccade) is a Chinese anti-ship missile first unveiled in 1989 by the China Haiying Electro-Mechanical Technology Academy (CHETA), also known as the Third Academy. Due to the Yingji-82 missile's small radar reflectivity, low attack flight path (only five to seven meters above the sea surface) and strong anti-jamming capability of its guidance system, target ships have a very small chance of intercepting the missile. The single shot hit probability of the Yingji-82 is estimated to be as high as 98%. The Yingji-82 can be launched from airplanes, surface ships, submarines and land-based vehicles. Its export name is the C-802.

The Yingji-82 (C-802) anti-ship missile was derived from the Chinese YJ-8 (C-801) with extended range. The YJ-82 is externally similar to the YJ-8, and has the same solid-propellant rocket booster and guidance system as the YJ-8. The most distinctive difference on the YJ-82 is that it employs a turbojet with paraffin (kerosene)-based fuel to replace the original solid rocket engine. For this reason the fuselage was extended to accommodate the extra fuel. The maximum range of the missile has also been extended from the original 40 km (or 80 km for YJ-81/C-801A) to 120 km.

The YJ-82 is almost identical to the YJ-8 in appearance apart from a slightly longer fuselage and an air inlet for the turbojet engine. The missile has a slim body and ovoid nose. There are four front delta wings, four smaller control surfaces, and four large tail stabilising wings. The tail wings are mounted on the rocket booster and will be lost when the booster detaches from the missile body. The air inlet is located between the main fins under the missile body. The front and tail wings are folded when the missile is in the launcher.

When the missile is launched, the solid rocket propellant booster accelerates the speed of the missile to Mach 0.9 in a few seconds. After the booster burns out, it detaches from the missile body and the missile's turbojet engine starts working. Controlled by the inertial autopilot system and radio altimeter, the missile flies at a cruising speed of Mach 0.9, and the cruise altitude is reduced to 10–20 metres (depending on the sea state) from the original 20–30 metres of the C-801/YJ-81.

When entering the terminal phase of flight, the missile switches on its terminal guidance radar to search for the target. Once within a few kilometers of the target, the missile drops to 3–5 meters above sea level, about the same as a French Exocet missile. This altitude is slightly lower than the original 5–7 metres of the C-801/YJ-81. The missile may also maneuver during the terminal phase to make it a more difficult target for shipborne air defense systems. When approaching the target, the missile dives to hit the waterline of the ship to inflict maximum damage. At the 6th Zhuhai Airshow held at the end of 2006, the manufacturer revealed that the "pop-up" approach and the checkpoint flight functions are being worked on.

没有评论:

发表评论